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Abstract. A theory of photodetection is presented which takes fully into account the 
relaxation of the photosensitive atoms representing the detector. Atoms, electromagnetic 
field, and atom-field interaction are described in terms of the Dicke Hamiltonian with 
additional coupling of the atoms to a reservoir. The time evolution of the joint detector 
and field states is derived using master equation techniques. Simple relations between the 
dynamics of field and atomic moments are obtained in the case of zero detector 
temperature. The attenuation of the field moments as well as the photocounting pro- 
bability for any initial field state are found to involve not only the atom-field, but also the 
atom-reservoir coupling parameters. 

1. Introduction 

In this article we reinvestigate the problem of retrieving statistical properties of 
electromagnetic fields from photodetector signals. Previous detector model Hamil- 
tonians include the detector atoms, the field, and the atom-field interaction. Two 
different approaches can be distinguished in the literature: semi-classical perturbation 
theory (Mandel 1963, Mandel er a1 1964, Wolf and Mehta 1964) and full quantum 
perturbation theory (Kelly and Kleiner 1964, Glauber 1965, 1969, Lehmberg 1968, 
Mollow 1968, Scully and Lamb 1969, Jaiswal and Agarwal 1969, Mandel and Meltzer 
1969, Rocca 1973, Arnedo and Rocca 1974, and Rousseau 1977). Reviews account- 
ing for the corresponding states of the art (Mandel and Wolf 1965, Mehta 1970, 
Arecchi and Degiorgio 1972) and for the link with decision theory (Helstrom 1972) 
are available. The interest in applications of photon correlation such as Doppler 
velocimetry (Cummins and Pike 1974, Watrasiewicz and Rudd 1975) and scattering 
by random phase screens (Cummins and Pike 1974, Zardecki and Delisle 1977, 
Mandel and Wolf 1977) is still growing. 

Conventional perturbation theory (Kelly and Kleiner 1964, Glauber 1965, Rocca 
1973, Arnedo and Rocca 1974) excludes the effects of virtual transitions and requires 
a reservoir-like behaviour of the field, since the attenuation of the field due to the 
interaction with the detector is not adequately taken into account. Other procedures 
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such as the Heisenberg equation of motion (Mollow 1968, Glauber 1969) and master- 
equation-type methods (Scully and Lamb 1969) fully account for the field attenuation, 
but require the atomic system to act as a reservoir. Thus the atoms have to play the 
role of the photosensitive system and, simultaneously, that of the reservoir. This leads 
to severe limitations being imposed on the atomic spectrum, the atom-field coupling 
strength, and the lifetime of excited states (Mollow 1968). 

In the present paper we propose a detector scheme in which the atoms are not only 
coupled to the field as usual, but are in addition coupled to a reservoir. The reservoir 
provides the mechanism for the relaxation of excited atoms, i.e. the withdrawal of 
photoelectrons. Thus the coupling of the atoms to the reservoir prevents radiative 
decay during the measurement as well as back reaction effects like stimulated emission 
and saturation. In experimental situations the reservoir corresponds to the detector 
electronics and cryostat. 

Our model calculation shows the following features. We consider a point-like 
model detector that consists of many identical two-level atoms. We describe the 
atoms, the field, and the atom-field interaction in terms of the Dicke (1954) Hamil- 
tonian. We introduce additional terms in the Hamiltonian which allow for the coup- 
ling of the atoms to a reservoir with rapidly decaying internal correlation. We derive 
the dynamics of the joint states of the detector atoms and the field by using the 
reduced-density-matrix formalism for the successive elimination of reservoir and 
atomic, or field, variables. We assume that the atom-field coupling is strong compared 
with the atom-bath coupling and consider times that are large compared with the 
atomic relaxation time. Moreover, we establish the attenuation of the field moments 
as well as the relations between atomic and field moments of any order in the case of 
zero detector temperature. Temperature effects on the field dynamics are studied in a 
forthcoming paper. Finally, we find the photocounting rate to be formally analogous 
to the one derived by Mollow (1968) and Scully and Lamb (1969) and Rousseau 
(1977), with the conversion efficiency, however, depending not only on the atom- 
field, but also the atom-bath, coupling parameter. Our approach accounts adequately 
for both the field attenuation and the atomic relaxation. 

In § 2 we present our detector model, and in § 3 we derive the equation of motion 
of the reduced density operator of the Dicke system by eliminating the bath variables. 
The objective of 94 is the field attenuation in the case of zero detector temperature. 
The connection between the dynamics of atomic and field moments is established in 
§ 5 .  Finally, in § 6, we discuss the corresponding photocounting probability. 

The generalisation of our approach to multi-mode fields and different atomic 
positions (extended detector) and level spacings is straightforward, but is not presen- 
ted here. 

2. Model Hamiltonian 

We assume that the photodetector consists of N independent equivalent, but dis- 
tinguishable, two-level atoms with level spacing E .  The atoms interact with a single- 
mode field of frequency w in a cavity of volume V. Atoms, field, and interaction are 
described by the Dicke Hamiltonian 

H~ = H ~ +  H ~ + A  v - ’ ” H ~ ~  

= wa + E S ~  + A  V-’”(aS+ + a ts-), (1) 
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where a ', a denote the field operators and where 

denote the collective, and s3j  and ST the individual, atomic variables. The coupling 
constant is A = w1'2g12 with g12 denoting the dipole transition matrix element of the 
atoms (h=  1). In the present paper we assume that the atoms are initially in their 
ground state IO), = IS = N/2, S3 = -N/2). An interaction of the atoms with a reservoir 
is required in order to provide a stationary distribution of the atoms in the initial state 
and a mechanism for withdrawing excited atoms and allowing the definition of a 
photoelectric current. We therefore introduce a bath described by the Hamiltonian 
H B  and its interaction with the atoms described by the Hamiltonian HAB. The full 
detector model is thus given by 

H = HD + H B  + HAB. (2) 
In order to prevent reservoir-induced interaction between the atoms we couple each 
atom to an individual bath described by the observables rt, rT. This is achieved by 
choosing the coupling Hamiltonian 

with pj denoting the coupling constants. We assume that the bath observables obey 
the relation 

exp(iHBt)r' exp(-iHBt) = 1 r;,,, exp[i(E, -~, , , ) t ] ln)(m/ (4 1 
n,m 

with diagonal matrix elements r:, = 0, and the commutator or anticommutator rela- 
tion [rt, rJ* = Sij .  All other commutators or anticommutators are assumed to vanish. 
We do not have to specify whether the bath is made up of bosons or fermions. 

The above Hamiltonian simplifies provided that the detector temperature is zero 
and the number (N2)  of excited atoms is small, i.e. (N2)<< N.  In this limit, the atomic 
system can be described as well by the oscillator approximation (Glauber 1965, 
Arecchi et a1 1972, Selloni et a1 1977). 

3. Elimination of bath variables 

Let us denote by p the density operator which corresponds to the total system 
described by the Hamiltonian (2) with (1) and (3). Applying the partial trace with 
respect to the bath variables as usual, we obtain the reduced density matrix pD = TrB p 
which describes the Dicke system whose atoms are affected by interaction with the 
reservoir. We study the time evolution of p D  using master-equation methods (Zwan- 
zig 1961, Favre and Marti: 1968, Haken 1970, Haake 1973). To this end, we assume 
that the bath and the Dicke system are uncorrelated at time t = 0 and that the initial 
bath equilibrium p ~ ( 0 )  is stationary with respect to the free bath motion (Zwanzig 
1960, Favre and Martin 1968). We consider the equation of motion of pD in the van 
Hove (weak-coupling) limit leading to Markoffian time evolution. We make use of the 
asymptotic form (Scharf 1970, Schwendimann 1972) of the eigenvalues E,@) of the 
Dicke Hamiltonian for large N, namely, E, (A ) -E ,  (A = 0) + nA. Moreover, we have 
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to require that any internal bath correlations (Louise11 1973) decay in a time that is 
small compared with the characteristic time involved in the dynamics of the Dicke 
system. Approximating the bath correlation function by exponential decay, e.g. 

(rJ(t)r'i(o>)B - exp(-t/.ri), (5  1 
where the average is meant with respect to bath equilibrium distribution pB(O), we 
have to assume that the condition (Schwendimann 1972) 

7j << (V/N)A -' (6 )  

is fulfilled. Now we are entitled to approximate exp(XDt) by exp(XAt) exp(XFt) with 
XD, XA, and XF denoting the Liouvillians corresponding to HD, Ha, and HF, 
respectively. We thus obtain the equation of motion of the reduced density operator 
P D ,  namely 

N 

P D ( ~ )  = -i[HD, pD(t)] + 9ApD(t), 9 A  E 1 Bjy (7 1 
j = l  

with Banach-space operators 9j defined by 

(8) 9, ,PD-2Z(ylj([si, = L  sfpDl+[pDsi, s f I ) + Y 2 i ( [ s f ,  siPD]+[PDsf, sT1)). 

Here y l j  and y 2 j  are inverse atomic relaxation times which depend on the atom- 
reservoir coupling strengths w j  and on the reservoir correlation functions, namely 

y l j  = pj 

y 2 j  = (I';(-t)rf(0))B exp(iet) dt, 

(rf(0)ry(-t))B exp(-id) dt, .Is 
where the index B stands for the free-bath equilibrium state p ~ ( 0 ) .  We observe that 
the non-Hermitian operators gj have the properties 

9s' I 1  = - t ( Y l j  + y&;, 

gjs3j = -(ylj + y2j)(s3j -uOj/2) 

(11) 

(12) 

where moj (Y l j  - ~ 2 j ) / ( y l j  + y2j). 

times are identical, i.e. we are entitled to write 
Since our model (1) requires identical atoms, we assume that the atomic relaxation 

71 Ylj, Y2 E Y2j9 CO= CO+ (13) 

In the case of a thermal bath with pB(o)xexp(-pHB) we have y 1 / y 2  = exp(-Pe) and 
there fore 

mo = -tanh(p~/2),  -1 d u o s  1. (14) 

We recall that mo is known as the unsaturated inversion in laser theory (Haken 1970). 
In this paper we choose the ground state 10)A(Ol defined by ( S ~ ~ ) = ( S Z ~ ) = O  and 
( s g j )  = -4 as the initial atomic state p ~ ( 0 ) .  This choice corresponds to the limit p + 00 

(zero temperature) or uo+-l. The case of finite temperature is treated in a 
subsequent paper. 
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4. Field dynamics 

From the equation of motion (7) we now derive the time evolution of the field by 
eliminating the atomic variables. This reduction is achieved in terms of the partial 
trace with respect to the atomic system. Assuming zero detector temperature, we 
define the projector 

PA = lo>~(ol @TrA (15) 

PF(f) = TrA{pAPD(f)}. (16) 

leading to the reduced density operator 

We notice that B A 9 A  = 0. Applying P A  to (7) we obtain the master equation 

jiF(t) = -i[HF, PF(f)] + A  V-'TrA PAXAF%?'XAFPApD(t - f ' )  dt' (17) 

%: exp{[XA + + %'F + A (U - SA)XAF(U - P,)]t} (18) 

6' 
where 

with R A F  denoting the Liouvillian corresponding to HAF and with U standing for the 
unity Banach-space operator. The above equation is evaluated using [XD, %AB] = 0. 

Dyson's formula leads to an expansion of (18) in powers of AN1/2/yV1/2 with the 
atomic damping constant y = (yl + y2)/2. We assume that the atomic relaxation due 
to the bath is rapid compared with the relaxation due to the field, i.e. the correspond- 
ing characteristic times are supposed to obey 

y-'<< A-'(N/ V)-1'2. (19) 
Thus, we are entitled to use the Born approximation. This approximation is also 
compatible with our interest in solutions of (17) for times large compared with the 
atomic relaxation time, namely 

t >> y-l. (20) 
In the above limits, (17) leads to 

bF(t)=-i(w + A ) [ a t a ,  PF(f)]-K[1 +(E-OJ)2/Y2]-1([at, apF(t)]+[PF(t)a', a ] )  (21) 

with the resonance absorption constant 

K =A2N/yV (22) 

A = ~ y - l ( w  -€)[I + (w - e ) * / y 2 ] - ' .  

obeying K << y, and with the shift 

(23) 

Equation (21) can be transformed into a first-order partial differential equation for the 
quasi-probability P F ( ~ ,  t )  defined by 

PF(t)=V-' I d2Ctla)(alPF(a, f )  (24) 

where la) denotes the coherent state. In the case of resonance w = E  this equation 
reads 
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Using (25 )  we can easily retrive PF(a,0) and thus pF(0) from PF(a, t ) .  Equation ( 2 5 )  
leads to exponential decay of the field amplitude a with a time constant K .  

From (25 )  we derive the equation of motion of the vth field moment, Y =  

1 , 2 , 3 , .  . . , in the resonant case, namely 

(d/d t )( a ' = -2 VK ( a  ' "a  (26 )  

The non-resonant case is described by the same equation, but with K replaced by 
~ [ 1 +  (o - ~ ) ' / y ~ ] - ' .  Equation ( 2 6 )  explicitly shows the attenuation of the field due to 
the absorption process, We observe that the absorption constant K does not only 
depend on the atom-field coupling constant A ,  but also on the atom-bath relaxation 
constant y. We recall that no restriction other than the natural time scales 
A -'(N/ V)-1'2 >> y-' >> 7i has been adopted here. We point out that condition (19) is 
crucial for preventing radiative decay. 

5. Dynamics of atomic moments and relation to field moments 

In the preceding section we presented the time evolution of the statistical state of the 
field due to the interaction with the detector atoms. Since our aim is the retrieval of 
field statistics from observed detector behaviour, we next have to find the relation 
between the statistical state of the field and that of the atomic system representing the 
detector. This is done in terms of relations between field moments (ut"u ") and atomic 
moments. The latter moments are defined as expectation values of the powers of the 
operator N 2  defined as 

The factorial moments N:"' of N2 are evaluated with respect to the reduced density 
operator pA of the atomic system. 

We obtain pA from the Dicke operator pD obeying ( 7 )  by taking the partial trace 
with respect to field variables. Being interested in the deviations from the initial 
ground state we consider 

Because of (16), equation (29) provides relationships betn,een the atomic and field 
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expectation values. We calculate 

evaluating (29) at resonance w = E up to the second order in A for t >> y- ’ ,  and find the 
linear relation 

W 2 ) r  = ~ ( a + a > t  (32) 

l = A  ’N/ y z  v = K/ y (33) 

with the proportionality constant 

obeying [<< 1 .  This property of t justifies the second-order approximation in the 
evaluation of (Nz),. Out of resonance, 5 has to be multiplied by [ l + ( w  -~)’/-y*]-’. 
Thus the photocurrent is found to be proportional to the field intensity at any time 

The calculation of higher-order factorial moments is outlined in the appendix. The 
t >> y - l .  

final result reads (N  >> 1) 

(N:”’), E (Nz(N2- 1). . (Nz-  Y + l ) ) t  = l”(a’”a ”)r. (34) 

This relation between atom and field statistics is the main result of the present paper 
and is basic to the calculation of the photocounting probability. 

6.  Photocounting probability 

In this section we discuss the experimentally accessible counting rate. Combining (26) 
and (34) for the case Y = 1 leads to the rate equation 

which tells us that the time variation of the number of photons inside the cavity is 
equal to the number of excited atoms (photoelectrons) which leave the cavity in the 
time interval y- ’ .  Since y- l  is very small, y-l<< K - ~ ,  we can furthermore deduce that 
the atoms follow the field adiabatically. We evaluate (35) by introducing the coherent 
state representation &(CY, t )  for the field. We define the number NA(t0, to+ T )  of 
atoms excited in the time interval ( to ,  to + T ) ,  i.e. the number of photocounts, namely 

NA(f0, to+ T )  
ro+ T 

1 2 y l  ( N J r d t  

= 2K dza  P F ( ~ ,  0) 1’ e X p ( - 2 ~ t )  d t  

0 

io+ T 

to 

= d2aPF(a, 0)la I:,[ 1 - eXp(-2KT)] 

with 
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and with 

denoting the average number of photons at time t. We thus find that the number of 
photocounts (excited atoms) in the time interval (to,  to+ T )  is equal to the number of 
photons which are absorbed in the same time interval. This result is not unexpected 
since our model does not include mechanisms allowing for field losses. 

We define the vth factorial moment of the photoelectron number in the time 
interval to < r < to + T by 

~ k " )  (to, to + T )  
r,+T 

dfv(N2(tl)(N2(r2)- 1 ) .  . (Nz(tu)- Y + 1)). (39) 

As we are dealing with a Markoffian stochastic process, all joint probability dis- 
tributions are determined by the solution of equation (25). We thus obtain 

=(2y)'J f0 dtl . . . 6:= 
Nk"'(to, to+ T ) =  J d 2 d F ( a ,  o ) ( ( Y ( ~ ~ [ 1  -exp(-2~T)]". (40) 

Of particular interest is the photocounting probability p ( n  ; to, to + T )  which we define 
from NZ' by 

Na"'(to, t o + T ) = x  n ! [ ( n - v ) ! ] - ' p ( n ;  t o ,  to+T). 
n 

The photocounting probability is calculated by using the standard generating function 

Q ( x ; t o ,  to+ T ) = x  ( 1  - x ) " p ( n ;  to, to+ T ) .  
n 

We finally obtain 

p ( n  ; to, to + T )  = ( n  0-1 J d2apF(a, 0 ~ 7  I ~ I ~ X  exp(-q /a 1 ~ 1  (43) 

with 

q = 1 -eXp(-2~T), K = A  2N/-yV. (44) 
We thus find that the probability p ( n ;  to, to+ T )  of observing n excited atoms in the 
time interval (to, to+ T) equals the probability that n photons are absorbed in the 
same time interval. The photocounting probability (43) obeys a Pauli equation with 
time-dependent transition probabilities, namely 

= 2 ~ n q - ' ( l - q ) p ( n ;  to, t 0 + ~ ) - 2 ~ ( n + l ) q - l ( l - q ) p ( n + l ;  to, to+T),  

(45) 
the solution of which reads 
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where pm(to)=p(m;  to, to+oo) denotes the probability of having m photons at the 
time to. In the limit T+O we find p ( n ;  ro,to+O)= &,, We recall the condition 
to >> y -'. 

We observe that the form of equations (43) and (46) is identical to that of the 
previous results due to Mollow (1968) and Scully and Lamb (1969), which were 
recently reconsidered by Rousseau (1977) in terms of perturbation theory for 
independent detector atoms. However, the physical meaning of the attenuation 
constant y in (43) and (46) is different. This constant depends not only on the 
atom-field interaction (coupling constant A ), but also on the atomic relaxation due to 
the coupling to the reservoirs (relaxation constant y ) ,  whereas the corresponding 
parameter in the previous results allows only for atom-field interaction. 

The constant y represents a condensed description of the experimental set-up 
(responsible for e.g. the extraction of photoelectrons from the detector). Under the 
simplification that the measuring apparatus can be described by a single parameter, we 
have shown how this parameter affects the observed counting rate. 

The initial statistical state &(a, to) of the field is retrieved from knowledge of the 
counting probability p ( n ;  to, to+ T )  by inversion of the integral transformation (43). 
This is achieved by modifying a previous procedure (Wolf and Mehta 1964) for the 
inversion of Mandel's formula. To this end. we define 

and obtain 

where cp denotes the phase angle of a. We notice that we can retrieve only the phase 
average of PF(a,to) since only field intensity correlations are involved in (43). 

The essential result of this paper is relation (34) between atomic and field 
moments. This relation is valid for times large compared with the atomic relaxation 
time y - l ,  where typically y-'<< lO-'s. We can therefore reconstruct the initial field 
statistics from counting rates measured at practically any time. Our model settles the 
usual difficulties of detection theory such as radiative decay, saturation, and stimulat- 
ing emission, and incorporates previous results on this subject. We finally point out 
that our detector scheme can be adapted to very general atomic systems without 
imposing unrealistic restrictions on the lifetime of the excited states. 

Appendix 1 

We are interested in the quantity 

where 
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From (29) we obtain 

where we define now 

Equation (A.3) is obtained under the following approximations. 
(i) By [ >> 1, terms of order higher than v are eliminated, Moreover, all terms 

(ii) Long time behaviour t >> y-’ is considered. 
with 1 < v vanish by application of sc to the vacuum. 

Because of the definition PA= lO)~(ol@ TrA also the terms of (A.3) containing PA 
vanish. This is shown by the same argument that has been used to eliminate the terms 
1 < v in the expansion (29). Thus we are left with the expression 

This result can be further simplified by some straightforward manipulations. 

terms are of the form 
(i) From the structure of the commutator we infer that the only non-vanishing 

(ii) Using the properties 

Tr(stsT%?X) = exp(-2yt) Tr (s fs iX)  

Tr(AXAF,j%?x) = exp(-yt) Tr(AxAF,J), 

(at zero temperature), 

and 

Tr(%:X) = Tr X, 

We can bring all the %:-,,+, operators to the left of (A.3). As a result we obtain the 
factor 

m I, dtl exp(-2vytl) [’ df2.  . . r”-’ dtzv exp(yt2). . . exp(yt2,) 

= (2v!)-’y-*”. 
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Collecting all these results we can write (A.5) as 

(-4.8) + -  XTrA.F(St. . . si ,s i , .  . . s L % A F , k , . .  . %AF,k,”lo)A(olPF(t>>. 

The 2v-fold commutator in (A.8) is evaluated by using the expansion formula 

Inserting (A.9) into (A.8) we notice that the only term of (A.9) yielding a non-zero 
contribution is the one showing v operators of the type S; operating on IO)A(OI. Hence 
(A.8) leads to 

(A$“’), = y-2u(hV-1”)2Y(v!)-2 1 C fi fi Akl,{k,} 
1 1 .  ,I” k l ,  , h z v  i = 1  r = i  

+ -  XTrA(Sk,+l . . . S i 2 ” $ :  I . . S I v S l , .  . . S,Sl, . . . S ~ v ~ O ) ~ ( O l ) ( a ’ ” a ” ) r .  (A.10) 

The above trace is easily evaluated and is found to include the factor (v!)’ resulting 
from the number of combinations of s; and s k ,  and si and sf;,. We finally carry out 
the sums in (A.lO) and obtain 

(N:”’), (A z y - 2  V-’)”N(N - 1) .  . , ( N  - v + l ) (a t”a  ” ) t .  (A. 11) 

References 

Arecchi F T, Courtens E, Gilmore R and Thomas H 1972 Phys. Ret.. A 6 2211-37 
Arecchi F T and Degiorgio V 1972 Laserhandbook vol 1, eds F T Arecchi and E 0 Schulz-Dubois 

(Amsterdam: North-Holland) pp 191-264 
Arnedo A and Rocca F 1974 Z. Phps. 269 205-13 
Bonifacio R, Schwendimann P and Haake F 1971 Phys. Ret.. .4 4 302-13 
Cummins H Z and Pike E R 1974 Photon Correlation and Light Beating Specrroscopy, Nato Advanced Study 

Institute. Capri 1973 (New York: Plenum Press) 
Dicke R H 1954 PhJbs. Rev. 93 99-110 
Favre C and Martin Ph 1968 lfelt.. Phys. Acta 4 1  333-61 
Glauber R 1965 Quantum Optics and Electronics, Les Houches 1964 eds C de Witt, A Blandin and 

~ 1969 Quantum Optics, Varenna Course XLIII ed R Glauber (New York: Academic Press) pp 15-56 
Haake F 1973 Statistical Treatment of Open Systems bp Generalized Master Equations, Springer Tracts in 

Haken H 1970 Laser Theory, Encyclopedia of Physics ed S Fliigge, vol 25/2c ed L Genzel (Heidelberg: 

Helstrom C W 1972 Progress in Optics vol 10, ed E Wolf (Amsterdam: North-Holland) pp 289-369 
Jaiswal A K and Agarwal G S 1969 JOpt .  Soc. A m .  59 1446-52 
Kelley P L and Kleiner W H 1964 Phys. Rev.  136 A316-34 
Lehmberg R H 1968 Phys. Reo. 167 1152-8 
Louise11 W H 1973 Quantirm Statistical Properties of Radiation (New York: Wiley) chap. 6 
Mandel L 1963 Progress in Optics vol 2, ed E Wolf (Amsterdam: North-Holland) pp 181-248 
Mandel L and Meltzer D 1969 Phys. Reo. 188 198-212 
Mandel L, Sudarshan E C G and Wolf E 1964 Proc. Phys. Soc. 84 435-44 
Mandel L and Wolf E 1965 Reo. Mod. Phys. 37 213-87 
- (eds) 1978 Proc. 4th Rochester Conf. on Coherence and Quantum Optics (New York: Plenum Press) 
Mehta C L 1970 Progrzss in Optics vol 8. ed E Wolf (Amsterdam: North-Holland) pp 373-440 

C Cohen-Tannoudji (New York: Gordon and Breach) pp 63-185 

Modern Physics vol 66 (Heidelberg: Springer) 

Springer) 



1438 A Selloni, P Schwendimann, A Quattropani and H P Baltes 

Mollow B R 1968 Phys. Rev. 168 1896-919 
Rocca F 1973 Phys. Rev. D 8 4403-10 
Rousseau M 1977 J. Phys. A :  Math Gen. 10 1043-7 
Scharf G 1970 Helv. Phys. Acta 43 806-28 
Schwendimann P 1972 Z.  Phys. 251 244-53 
Scully M 0 and Lamb W E 1969 Phys. Rev. 179 368-74 
Selloni A, Schwendimann P, Quattropani A and Baltes H P 1977 Opr. Commun. 22 1 3 1 4  
Watrasiewicz B M and Rudd M J 1975 Laser Doppler Measuremenrs (London: Butterworth) 
Wolf E and Mehta C L 1964 Phys. Rev. Lerr. 13 705-9 
Zardecki A and Delisle C 1977 Opt. Acra 24 241-51 
Zwanzig R 1961 Lectures in Theoretical Physics vol 111 (New York: Interscience) pp 106-41 


